
Technical Reoprt

CMU/SEI-W8TR1 3

Dfl FILE COPY ESD-TR-W-014

. Carnegie-Mellon University

Software Engineering Institute

Phase I
Testbed Description:
Requirements and Selection
Guidelines

Ln Robert Holibaugh
0)k J.M. Perry

00 L.A. Sun
September 1988

\,, N
NIE \CT\

\ U

a,

-[::" • - I I I' = !



Technical Report
CMU/SEI-88-TR-13

ESD-TR-88-014
September 1988

Phase I
Testbed Description:

Requirements and Selection Guidelines

Robert Holibaugh
J. M. Perry

L. A. Sun
Application of Reusable Software Components Project

Accession For
NTIS GRA&I
DTIC TAB
Unannounced
Justification

' By
'{4.. Distributio°n/

Availability Codes

!Avail and/or
Dist Special

IA J _ _ Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler ,..
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1988 by Carnegie Mellon University.

This document i avalable though the Defense Technical Information Cente. DTIC provides access to and transfer of
sclentific aid technical information for DoD pemonnel, DoD contractrs &d potential conracors, and other U.S. Government
agency personnel and their contractors. To obtajn a copy, please contact DTIC diredly: Defense Technical Information
Center. Atn: FDRA. Cameron Station. Alexandria, VA 22304-6145.
Copies of tis document are also available through the National Technical Information Services. For information on ordering,
pianse conact NTIS directly: National Technical Information Services, U.S. Department of Commerce. Springfield, VA 22161.

Use of any trademark in this publication is not Intended in any way to infringe on the rights of the trademark
holder.



Table of Contents
1. Introduction 1

1.1. Background 1
1.2. Objective 2

2. General Selection Guidelines 3
2.1. General Selection Methodology for the Testbed 3
2.2. Emphasis on Reuse and Experiments 3
2.3. Selection Based on Subjective Judgment 3
2.4. Selection Limitations 3
2.5. Basic Principles for Selection 4

3. Selection Guidelines 7
3. 1. Hardware Selection Guidelines for the Reuse Testbed 7

3.1.1. Support of Experiments 7
3.1.2. Maximization of Experience in Reusability 8
3.1.3. Applicability to Problem Domains 8
3.1.4. Acceleration of Technology Transition 8
3.1.5. Advance the State of the Practice in Reuse 8

3.2. Software Selection Guidelines for the Reuse Testbed 8
3.2.1. Support of Experiments 9
3.2.2. Maximization of Experience in Reusability 10
3.2.3. Applicability to Problem Domains 11
3.2.4. Acceleration of Technology Transition 11
3.2.5. Advance the State of the Practice in Reuse 11

3.3. Reusable Resources Guidelines for the Reuse Testbed 11
3.3.1. Support of Experiments 11
3.3.2. Maximization of Experience in Reusability 12
3.3.3. Applicability to Problem Domains 13
3.3.4. Acceleration of Technology Transition 13
3.3.5. Advance the State of the Practice in Reuse 13

3.4. Environment Guidelines for the Reuse Testbed 13
3.4.1. Support of Experiments 14
3.4.2. Maximization of Experience in Reusability 16
3.4.3. Applicability to Problem Domains 16
3.4.4. Acceleration of Technology Transition 16
3.4.5. Advance the State of the Practice in Reuse 17

References 19

Appendix A. Glossary 21

CMU/SEI-88-TR-13 I



Phase I Testbed Description:
Requirements and Selection Guidelines

/
Abstract. The Application of Reusable Software Components Project has con-
structed a reuse testbed for conducting software engineering experiments in soft-
ware reusability. The hardware and system software of the testbed will provide a
distributed computing environment with file-server capability for the storage of
reusable components and other artifacts of the development process. The test-
bed will support a variety of domain-independent and domain-dependent reusable
components. The testbed will also support tools that foster reuse. This document
contains the requirements and selection criteria for the testbed hardware, soft-
ware, reusable resources, and an environment. For each of these four testbed
resources, the requirements are grouped into five areas: support of experiments,
maximization of experience and reusability, applicability to problem domains, ac-
celeration of technology transition, and advancing the state of the practice in
reuse.

1. Introduction

1.1. Background
The Application of Reusable Software Components Project at the Software Engineering In-
stitute (SEI) is constructing a reuse testbed in which to conduct experiments. A reuse test-
bed is a computer system for conducting software engineering experiments in software
reusability for the Reuse Project. The broad goals for this project include increasing experi-
ence with and understanding of software reusability, transition of reuse technologies be-
tween the SEI, the government, and the mission-critical computer resource (MCCR) industry
(i.e., relevance to the MCCR community), and the advancement of the state of the practice
in software reuse.

The purpose of these experiments is to:

" Quantify the risks and identify issues and problems when developing software
from reusable components.

" Identify the information necessary to apply reusable components during sys-
tems and software development.

To Investigate applying reusable components, the project must have software development
facilities, reusable components, and experimental methods. To meet these first two needs,
we will construct a testbed in which we will conduct experiments with affiliate partners. The
requirements for the Reuse Project testbed are specified in this document. In summary, the
requirements for the testbed address the support of experiments; the gaining of experience
in reusability; technology transition between the SEI, government, and industry; reasonable

CMU/SEI-68.TR-13



breadth of application to problem domains; and advancing the state of the practice in soft-
ware reuse.

The testbed's hardware and system software will provide a distributed computing environ-
ment with file-server capability for the storage of reusable components and other artifacts of
the development process. These requirements also address system and software test capa-
bilities.

The software development environment of the testbed will support all phases of the devel-
opment and have an integrated software engineering database for the storage and retrieval
of reusable components and newly developed software engineering artifacts.

The testbed will support a variety of reusable components, domain-independent and
domain-dependent. Example domains include data structure packages, missile navigation
components and tools, avionic designs, user Interface tools, and signal processing subsys-
tems.

The testbed requirements are general, because reuse has a large intersection with environ-
ments, methods, and tools for software engineering. The guidelines for selecting the test-
bed hardware and software have been derived from the requirements. A testbed must be
an open system into which one can integrate new tools and techniques as they become
available. It should also be representative of the facilities available to MCCR contractors
today.

1.2. Objective
The primary objective of the Reuse Project testbed is to provide the physical framework to
acquire, use, and evaluate existing reusable components. The testbed will also support ex-
ecuting a set of carefully controlled reuse experiments on problems of realistic size and
complexity and gaining experience and understanding of software reusability. The elements
of the Reuse Testbed are hardware, software tools, a software development environment, a
library for existing reuse parts, and a candidate development problem.

This paper will establish the guidelines for selecting the elements of the testbed that serve
the above purposes. The selection guidelines are derived analytically from the requirements
for the testbed. These requirements will be used to guide the selection of testbed elements,
which may be heterogeneous. For example, one may select both Apollo and MicroVAx
computers for the testbed. An Apollo network could be used to support requirements and
design, and the MicroVAxes could be used for implementation and testing.

Definitions of terms used in this document are presented in Appendix A.

2 CMU/SEI-88-TR-13



2. General Selection Guidelines

2.1. General Selection Methodology for the Testbed
The approach to selecting testbed elements is to expand on the requirements, establish
guidelines for each requirement, and prioritize the requirements. Hardware, software, envi-
ronment, and reusable component guidelines are used to evaluate candidates for addition to
the testbed. The testbed may contain several equivalent elements, e.g., compilers. The
availability of similar but different capabilities will support more and varied experiments than
a single set of elements. This means that we may add tools or software to the testbed when
we already have a tool or software that provides similar functionality. The guidelines will be
applied to each element before it is added to the testbed. Thus, the guidelines will change
over time as the needs of the project evolve.

To experiment with reusable components in a subsystem development, the testbed environ-
ment needs to contain a reasonably complete software development environment that sup-
ports all phases of the life cycle. Since the testbed will not remain static during the life of the
project, the environment must be capable of evolving to support new requirements and addi-
tional experiments.

2.2. Emphasis on Reuse and Experiments
The selection guidelines will emphasize features of the hardware, the software, and the en-
vironment that satisfy the testbed requirements for the purpose of software reuse. Various
tools will be considered for their ability to integrate with the environment, support reuse, and
support the reuse experiments.

2.3. Selection Based on Subjective Judgment
Some features of the testbed cannot be evaluated objectively because there are no appro-
priate metrics or because objective evaluation would be extremely time-consuming or costly.
Therefore, a certain amount of subjective professional judgment is required. These guide-
lines, consequently, make statements about features of the environment even if no reason-
able measurement of that feature exists.

2.4. Selection Limitations
These guidelines deal with the testbed running a particular operating system on particular
hardware. The problems of transportability or interoperability will only be addressed to a
small degree. These guidelines stress basic software development areas that are important
to experiments on reusability. The guidelines are concerned with the appropriateness of
testbed elements in the general case. Some selections are more fully evaluated than other

CMU/SEI-88-TR-13 3



selections. The depth of evaluation depends on the impact of the element being consid-
ered. There are no tests or measures to verify the correctness of each feature in the envi-
ronment. The basic features of consideration are assumed to work to the extent that they
have been verified or confirmed by other current SEI users or affiliates.

2.5. Basic Principles for Selection
The Reuse Project testbed is basically a set of computer facilities, integrated software tools,
and procedures to:

1. support experiments in software development
2. maximize our experience in reusability
3. apply to problem domains
4. accelerate technology transition
5. advance the state of the practice in reuse

The key principles considered are listed below in priority order:

" Critical:

" Reliability: Supporting software in the environment performs reliably.
Users can be supported in a reliable manner on a given resource. In
case of a system failure, the environment can be returned to a correct,
consistent prior state.

" Usability: The environment is easy to use. Further discussion is given in
the section on user interface.

" High Priority:

" Ada-Based: Since Ada will be used as the implementation language for
the reuse experiments, the environment must support Ada development.

* Compatibility: The environment has to be compatible with other environ-
ments used in the MCCR community to facilitate technology transition.
The environment must be compatible with common operating systems
used in the MCCR community. More details are included in the section
on operating system compatibility.

" Average Priority:

* Extensibility: New tools and new functions can be integrated. New
reusable components can be stored in an integrated database.

" Adaptability: It has portability. It can accommodate new methodologies,
new languages, and new computers. An environment can be adapted to
be domain-dependent or domain-independent.

" Completeness: It supports all phases of the software development. The
software tools should include analysis and design tools, editors, file man-
agers, compilers, linkers, debuggers, etc.

4 CMU/SEI-88-TR-13



The selection guidelines in the next chapter are derived from the five functional categories of
requirements for the testbed listed above and from the above basic principles.

CMU/SEI-88-TR-13 5



6 CMU/SEI-88TR-1 3



3. Selection Guidelines

3.1. Hardware Selection Guidelines for the Reuse Testbed
The hardware selection guidelines listed below are grouped with respect to the goal cate-
gories mentioned above. This grouping is helpful, because it provides some motivation for
the guidelines, it reflects the manner in which the guidelines were derived, and it helped to
Identify guidelines to achieve completeness. Criteria are itemized below, prefixed by HG,
and grouped by category. The guidelines are stated in qualitative form and are intended to
provide information to project personnel so that they can formulate more quantitative specifi-
cations.

3.1.1. Support of Experiments
HG1 Distributed system - A distributed configuration of host and target machines is
needed to support a distributed software engineering environment and to provide data
storage for a large number of reusable components. The distributed environment provides
the capability to integrate new and additional hardware as it becomes available. A distri-
buted environment also provides the flexibility to change hardware and software when nec-
essary. A distributed environment provides the potential for multiple experiments to be con-
ducted simultaneously without the experiments interfering with each other.

HG2 Commonly available operating system - The hardware must have a commonly avail-
able operating system or environment in order that the experiments reflect MCCR practices.
A common operating system will also be representative of the tools the MCCR community
can acquire and install.

HG3 Networking and communications facilities - Communication capabilities are neces-
sary for transporting with industry-acceptable performance source and object files between
machines, for access to network servers, for utilization of existing systems at the SEI, and
for distributed software development.

HG4 File server support - The testbed must have a file server for storing a potentially large
number of reusable components and other artifacts of the development process. This file
server can be one machine or a set of machines, or a virtual file system.

HG5 & HG6 Computing power and storage - The testbed configuration must provide, in-
itially, computational and storage capabilities with industry-acceptable performance for two
concurrent experiments each equivalent to a 7-person-year software development effort in-
volving use of tools, libraries, and application software. Moreover, these capabilities must
be expandable as necessary. In the future, it will have to support multiple, replicated, or
blocked experiments, along with unobtrusive automatic collection of at least simple types of
data.

HG7 Compatibility with systems/software test benches - The testbed hardware must

CMU/SEI-88-TR-13 7



have potential, to be realized at some future time, for interfacing with a test bench for testing
and debugging. Such a test bench may include simulators, console displays, debuggers
and monitors, systems buses, data generators, and a target processor.

3.1.2. Maximization of Experience in Reusability
HG8 Run-selected software development environment - The testbed hardware must run
the support software and software development (and maintenance) environment selected
for use on the project.

3.1.3. Applicability to Problem Domains
HG9 Target processors - The testbed must have the potential, to be realized at some fu-
ture time, for not only communicating with but for developing software for embedded proces-
sors such as 1750A.

3.1.4. Acceleration of Technology Transition
HG1O Representablllty - The hardware of the testbed must be commercially available and
have sufficient representation in the MCCR community so as not to limit the extrapolation
and impact of the conclusions of the software engineering experiments. For example,
hardware such as Symbolics will not be available to the general software engineering com-
munity in the near future.

3.1.5. Advance the State of the Practice In Reuse
HG11 System/software engineering workstations - The hardware of the testbed must
consist of state-of-the-art processors for which a quality Ada compiler is available. In addi-
tion, the testbed must utilize engineering workstations because many techniques for anal-
ysis and design exploit an interactive graphic man-machine interface.

3.2. Software Selection Guidelines for the Reuse Testbed
This section addresses software guidelines for the testbed as well as guidelines for the soft-
ware itself. Software comprises support software, tools, and project utilities. Most of the
software will be acquired. However, software may be developed if it is not available and if it
is important for achieving the goals of the experiment. Since the software development en-
vironment is a major component of the testbed, the environment is addressed separately in
another section. In fact, some of the software indicated below may be included as part of a
software development environment. Selection guidelines are derived from and included with
the testbed requirements. Guidelines are itemized below, prefixed by SG, and grouped by
category.

8 CMUISEI-88-TR-13



3.2.1. Support of Experiments
SGI Basic software tools - The following software tools are required:

9 Language editor (language)
* Compiler
9 Linker-loader
9 Runtime system
* Communications software
e File-transfer software
e File manager
e Configuration manager

The following software is desirable:

" Word processing
" Design tools
e Requirements tools
" Security software
" Electronic mail

SG2 Data collection - Software must provide the capability to collect and support the anal-
ysis of data from the experiments. The collection mechanisms should not be intrusive and
should use a minimum of the testbed's computer resources. The data collection
mechanisms should work off of existing software and augment the collection with predefined
forms or questionnaires. Once a software artifact is entered into the system, all changes
must be recorded. The information collected with each change needs to be entered into a
database for validation and later analysis. Furthermore, all relevant data for the change
must also be collected and recorded, for example, the reason for the change, the type of
change, the category of the change, other artifacts affected by the change.

SG3 Compatibility - The software must be compatible with the hardware, languages,
operating systems, reusable components and environments utilized for experiments. The
software should run on standard hardware and software systems. Software that is available
on a wider variety of hardware, operating systems, and environments is preferred over soft-
ware that can only be used in limited configurations.

SG4 Easy to use - Software must have a good user interface, be well documented, and
reliable. The purpose of the software tools is to improve the productivity of software profes-
sionals who are developing systems.

The evaluation of a human interface must take into account the characteristics of the tools
as well as the characteristics of the user employing the tools.

CMUISEI88-TR-13 9



The following features need to be considered in an evaluation of the human interface:

1. Documentation
2. Simplicity, clarity of expression
3. Consistency and uniformity of commands
4. Ease of use, ease of learning
5. Appropriate use of input/output devices
6. Help facilities
7. Tutorial/training material
8. Error messages and diagnostic capabilities

3.2.2. Maximization of Experience in Reusability
SG5 Software engineering database - Software must include a database or library system
for:

* storing a large set of heterogeneous components; these components could be
code, test generators, designs (graphics, text, or structured items)

" classifying the components by life-cycle phase, type, domain, breadth-of-
applicability, whether generative or passive, etc.

" locating a set of potential components based on the classification given above
and the attribute (requirements) of the components

* relating components to each other as appropriate, to designs that they imple-
ment, to the appropriate testing procedures for the component, to the require-
ments for that component, and to the systems in which the component has
been used

* retrieving reusable components from the database or library into the
developers' workspace

SG6 Reusable tools - Software should include reusable tools, for example, analyzers that
address reusability, template creators and manipulators, shells that embody a paradigm to
locate, understand, and integrate components for reuse. Reuse tools may be classified into
one of four support areas:

" locate
" understand
" modify
" integrate (e.g., composition, instantiation)

These areas are not mutually exclusive. For example, common Ada missile packages
(CAMP) provide a tool that interacts with the user to select parameters for the instantiation
of an Ada Kalman filter generic. This tool would be able to both modify and compose the
reusable component with other components.

SG7 Lessons learned - Software must support the feedback of experience gained from the
application of reusable resources so that experience will be captured. Software tools will be

10 CMU/SEI-88-TR-13



included in the testbed if they can be used to demonstrate the applicability of reusable com-
ponents, problems with reusable components, or the benefits of reusable components.

3.2.3. Applicability to Problem Domains
SG8 Relevance to MCCR domains - Software tools should be appropriate for MCCR prob-
lem domains and should include tools that support those domains. Software tools that are
not designed for MCCR problem domains may be included if the concepts are applicable or
the tools are generally useful. Some examples of useful tools include: source test
analyzers, code generators, simulators, or prototyping tools.

3.2.4. Acceleration of Technology Transition
SG9 Restricted software - Software, or its underlying concepts, must be available for distri-
bution. Software that is not available for distribution will be considered for the testbed if the
concepts are valid and we can transition the concepts or principles to government or indus-
try. Proprietary software will be considered for use in the testbed if it can be protected, nec-
essary releases obtained, and the concepts transitioned.

3.2.5. Advance the State of the Practice in Reuse
SG10 Maturing technology - Software must advance the state of the practice of software
reusability. Thus, requirement tools, design tools, and compiling systems that support auto-
matic inclusion from and storage into a library are preferred over those that do not.

3.3. Reusable Resources Guidelines for the Reuse Testbed
The primary purpose of the project is directed at investigating software reusability. Thus,
collections of reusable resources are central to the testbed. Guidelines for reusable
resources are itemized below, prefixed by RG, and grouped by category.

3.3.1. Support of Experiments
RG1 Life-cycle support - The collections of reusable resources must include several types
and have the potential of supporting several phases of the life cycle. Different types of reus-
able resources include requirements, goals and plans, designs, specifications, generics,
schemas, transformations, standards, and tools. Moreover, these types must be applicable
to the variety of software products, including designs, documents, codes, and tests that are
produced during development.

RG2 Domain dependency - The testbed must contain both domain-dependent and
domain-independent components, so that experiments can address the breadth of the
domain-dependent parts or the power of the domain-independent parts. For example, the
EVB parts are domain-independent; some of the CAMP components are domain-
dependent.

RG3 Compatibility - The reusable components must be compatible with the software and
environment used for the experiment(s). In particular, they must be compatible with Ada.

CMU/SEI-S88TR-13 11



RG4 Adaptability - There must not be any strong restrictions on the use of the resources,
e.g., any dependency on a non-common environment or methodology or operating system.

RG5 Reliability - The components must be reasonably reliable, given the state of the art in
software reusability.

RG6 Facilitate experimental design - The application of the reusable components must
involve a priori unanswered questions that will serve as the basis for experimental design
and that will Improve the chances for meaningful results.

3.3.2. Maximization of Experience in Reusability
RG7 Reusability - The components must have been designed for reuse or have attributes
that make them reusable to a high degree.

RG8 Creators and users - It is desirable that the reusable components must come from
several sources. Moreover, the users of the components in the experiment(s) must not be
the ones who created the reusable components.

RG9 Ease of use - The reusable components must have adequate documentation and not
require more than several days' training for their use.

RG10 Taxonomy - The reusable components must have an explicit taxonomy or fit into a
given taxonomy.

RG11 Related components - Reusable components that have relationships actual or po-
tential relationships with other reusable components are preferred over unrelated reusable
components of small granularity.

RG12 Richness of a collection - The number of reusable components in the testbed must
be sufficiently large to enable meaningful conclusions from the experiments. This guideline
is based on the hypothesis that large collections are more likely to embody architectural and
design concepts, methodologies for reuse, relational interactions among the components, or
heuristics for reuse. A richer collection will allow for more flexibility in the design of the
experiments.

RG13 Variety of types - Collections of reusable resources must Include several types and
granularity of components and have the potential for supporting several phases of the life
cycle. Examples of different types of reusable components are generic requirements, speci-
fications, architectures, designs, subsystems, procedures, and data structures. Further, in
addition to the components per se, It Is preferable that a collection has a paradigm associ-
ated with it for its use. For example, the reuse paradigm for a collection may be In the form
of methods or tools for manipulating or combining the components.

12 CMU/SEI-8.TR-13



3.3.3. Applicability to Problem Domains
RG14 Relevant to MCCR domains - Domain-dependent collections of reusable compo-
nents must be relevant to MCCR problem domains for some of the experiments, such as the
redevelopment experiment and, thus, be mappable to problem-domain taxonomies.

RG15 Domain-Independent relevancy - Domain-independent components must have suf-
ficient performance, including data precision, timing, space, and target properties appropri-
ate for MCCR domains. The documentation for the components must reflect the constraints
imposed by the specific domain.

RG16 Compatibility - The methodologies, environments, tools, operating systems, and lan-
guages of the reusable components must not invalidate interpretation results that are ap-
plicable to the MCCR community.

3.3.4. Acceleration of Technology Transition
RG17 Obstacles - Transition of reusable components from industry and government to the
SEI must not require unreasonable time and cost. On the other hand, proprietary and con-
fidentiality rights on the reusable components must not prevent the conclusions of the ex-
periments from being disseminated to the MCCR community.

RG18 Maturity - The reusability technology embodied in a collection of reusable resources
must be advanced enough and mature enough that it has the potential of improving produc-
tivity, and, if beneficial, could be put into practice now or in the near future.

3.3.5. Advance the State of the Practice In Reuse
RG19 New results - The reusable components must embody a technology that is suf-
ficiently advanced and mature so as to increase the chances for new results that advance
the state of the practice. The reusable components may embody a proven reusability tech-
nology that can be applied to another domain, a technology demonstrated on a small scale
but not yet applied to large system development, or a new technology that is ready for tran-
sition to practice.

3.4. Environment Guidelines for the Reuse Testbed
The environment must provide the testbed with capabilities to do software development in
MCCR problem domains, to support software development experiments, to gain experience
in reuse, to advance the state of the practice in software reuse, and to support technology
transition. Guidelines for selecting a suitable environment are itemized below, prefixed by
EG, and grouped by category.

CMU/SEI-88-TR-13 13



3.4.1. Support of Experiments
EG1 Multiple tools and methodologies - Tool integration is an important environment is-
sue. Typically, a common database serves as the underlying element for the other compo-
nents. A common user interface provides another level of integration. A stronger form of
integration is one that is based on a common concept underlying the tools. Ideally, this is
best achieved by imposing a particular methodology. Since a variety of reuse experiments
will be performed over several years, an environment that supports multi-methodologies and
does not attempt to impose a particular methodology is desirable.

EG2 Reuse tool and methodology testing - It must support the testing and evaluation of
tools, methods and methodologies for reuse. Examples of reuse tools include analyzers for
reusability, libraries of reusable components, template creators and manipulators. For ex-
ample, as the libraries become available, evaluation and testing can be done for perfor-
mance and accuracy.

EG3 Life-cycle development - The environment must support the entire software devel-
opment life cycle. The software life cycle includes a requirements phase, design phase,
implementation phase, test phase, installation and acceptance, operation and maintenance
phase, and sometimes a retirement phase. Tools that directly support any of the phases
must be acquired or developed if they are not available. The environment must provide the
capability of integrating these tools.

EG4 Data collection - Once the goals of the data collection are dearly defined and the
procedures to collect the data are specified, automatic or semiautomatic data collection sup-
port is possible. For example, data can be collected on the changes made to different ver-
sions of the development work. Therefore, various capabilities of the version
control/configuration management system can be utilized to facilitate the data collection. A
collection mechanism in the form of predefined reports or questionnaires can be easily in-
corporated into the environment. Experimental data include usage information, frequency of
changes, types of errors, and man hours.

EG5 All aspects of development - The environment must support all the activities of tech-
nical development in terms of project management, configuration management, data man-
agement, documentation, review, quality assurance, and software development planning ac-
tivities. Some basic capabilities that the environment must support are word processing,
editing, and electronic mall. Additional important capabilities are:

1. Data management: This includes an Integrated database with facilities for
user authorization (security control measures), backup and recovery, etc., and
tools or language for storage, retrieval, and modifications of software artifacts.

2. Access control: Users of the environment have different access rights to the
programs In the database. Different versions of a program may be modifiable
by selected groups for their specific purposes.

3. Version control: A large-scale project has many modules that undergo many
Improvements and modifications before they are finished. Bookkeeping facil-
Ities for version maintenance are necessary.

14 CMU/SEI-88.TR-13



4. Configuration management: Tracking and recording facilities for maintaining
the independence between independently constructed modules in large proj-

0 ects are necessary.
5. Project management: Capability for managing the scheduling needs, people,

tasks, and software modules in large projects is essential.
6. Project communication: Good communication is essential for improving the

productivity of software professionals. Facilities such as electronic mail, bul-
* letin boards, and other means of communication should be made available for

the project personnel.

EG6 Support experimental methodology - The environment must support an experimen-
tal methodology such as the one described by Weiss and Basili (1985) on experimentation
in software engineering. In general, the environment supports experimental methodologies
in the following aspects:

a comprehensible - easy to use and understandable
* repeatable - to ensure objectivity of the experiment. i.e., it yields the same or

similar results when performed by different implementors
* * extensible - additional user activities and accompanying experiments can be

added easily; it should also accommodate different designs of an experiment in
terms of multiple projects or team performers

* user-oriented - to focus on user activities so that suitable "patterns of use* of
reusable components can be exploited and understood

* • independent of experimental methods - ensure that the environment is not
biased for or against any particular experimental method or approach

* analysis tools available - to support statistical data analysis or interpretation, for
example, tools for regression or factor analysis are desirable

EG7 Database support - The environment needs to be a distributed software computing
environment with access to a shared database. Internal communication channels (e.g., via
Ethernet) as well as external communication channels (e.g., via DECnet) must be provided
with a network environment. The database needs to be integrated with the environment and
the operating system to ensure efficient access and usage. There si ould be enough data
storage to host the tools, the support software, the reusable components, and all project-

5 related software development artifacts.

In addition, the selection guidelines for the environment in relation to its database also in-
clude:

9 User interface - appropriate type of query language that is easy to learn, and
without detailed knowledge of the data structure

9 Tool interface - uniform interface between the database and tools for retrieval
and storage

* Capacity - extensible to aid Integration of tools, allow addition of new tools and
functionality, and new data items and relationships

9 Functional capability - support storage, retrieval and modification of all project
data through the life-cycle development

CMU/SEI-8-TR-13 15

0 lini ni l Il l l i



" Security - protect SEI and company proprietary information, and export control
in a multi-user arrangement through user authorization or controlled access

" Integrity - provide automatic backup and restoration, a frequent "autosave"
while users are performing editing activities, and an enforcement of various
types of constraints on data changes

3.4.2. Maximization of Experience In Reusability
EG8 New tools and methodologies In reusability - At the current time, there are few tools
or methods that directly support reuse. As tools, methods, and techniques become avail-
able, the environment must be able to integrate them. The environment must support new
tools that help the developer locate, access, modify, and compose the reusable components
into the system under development. Also, the environment must provide the capability to
develop new tools for reusability.

EG9 Compatibility - When a testbed environment is built on top of an existing operating
system, it is important to ensure that the interface is smooth. If the interface is not smooth,
a duplication of effort and loss of performance and productivity will result. The environment
must be compatible with the hardware, the operating system, reusable components, and
software that are utilized for experiments.

3.4.3. Applicability to Problem Domains
EGI0 Multiple MCCR problem domains - The environment must support software devel-
opment for real-time embedded systems involving signal processing, navigation, and com-
mand, control, and communication.

EGi1 Integrated tool sets - In a problem domain such as signal processing, where the
reusability technology has matured, a set of integrated tools may have been developed for
reusing components. The environment should support incorporation of such well-integrated
tool sets.

EG12 Reuse taxonomy - To locate the reusable components during development, criteria
for evaluating and classifying components must be acquired or defined. The environment
needs to support multiple taxonomies applicable to various problem domains in which the
experiments are being performed.

3.4.4. Acceleration of Technology Transition
EG13 MCCR representability - The environment should be commercially available or be
representative of the MCCR community so that the experimental results are applicable. If
the environment is very specialized, then the results will not be applicable to the DoD or the
MCCR community, and the environment will not support the transition of technology.

16 CMU/SEI-88-TR-13



3.4.5. Advance the State of the Practice In Reuse
EGI 4 Storage and retrieval of components - The environment should not be so restrictive
that it rules out mechanisms that are very useful, for example, mechanisms for storing,
retrieving, indexing, and browsing libraries of reusable components.

EG15 Reuse technology - Software reuse may involve many different problems because
reuse may take many forms. Available data and experience in the reuse experiments will
help to solve problems, to capitalize on the different forms and methods, and to contribute to
their acceptance and practice. The environment must support investigations into these
problems.

EG16 Problem-domain Integration - The environment should provide support for integrat-
ing reusable software artifacts with those of the current development.

EG17 Promote reusable designs - Reusable components belong to one of two classes:
building block components, such as the EVB parts, or architectural components, such as the
embedded machine signal processing (EMSP) common operational signal processing
(ECOS) data flows or GTE structured techniques for engineering projects (STEP) generic
architecture. In the second class, there are relational interactions among the components
that influence design and constitute reusable design concepts. Reusability experience can
be obtained by explicitly formalizing and recognizing these design concepts. The environ-
ment must be open and unrestrictive to support this effort. Environments that have features
of class structure, encapsulation, and modularity also support lower-level reusable designs.

EG18 Support enforcement of standards - To promote reusability, standardization is nec-
essary. As standards for reuse in software development evolve, the environment should be
capable of actively supporting and enforcing them.

CMU/SEI-88-TR-13 17



18 CMU/SEI-88-TR-1 3



References
Balzer, Robert. Evolution as a New Basis for Reusability, ITT Workshop on Reusability in
Programming, Sep 1983.

Berard, Ed. Creating Reusable Ada Software, in National Conference Proceedings: Soft-
ware Reusability and Maintainability, Sep 10-11, 1986.

Booch, Grady. Software Components with Ada, Benjamin/Cummings, 1987.

Cheatham, Thomas. Reusability Through Program Transformation, IEEE Trans. on Soft-
ware Eng., Vol SE-10, No. 5, Sep 1984, pp 589 - 594.

DoD-STD-2167.

Gargaro, A. and Pappas, Frank. Ada Reusability Study, Computer Science Corporation,
Moorestown, NJ, Aug 1986.

McCain, Ron. Reusable Software Component Engineering, IBM, Houston, TX, Jul 1986.

McNicholls, Dan, Palmer, Constance, et al. Common Ada Missile Program, McDonnell
Douglas, St. Louis, MO, Air Force Armament Laboratory, Eglin AFB, FL, AFATL-TR-85-93,
May 1986.

Neighbors, James. The Draco Approach to Constructing Software from Reusable Compo-
nents, IEEE Trans. on Software Eng., Vol SE-10, No. 5, Sep 1984, pp 564 - 574.

Nise, Norman S. and Giffin, Chuck. The Design for Reusable Software Commonality, Rock-
well International, Downey, CA, Mar 1984.

Presson, Ed, Tsai, J., Bowen, T., Post, J., and Schmidt, R. Software Interoperability and
Reusability Guidebook for Software Quality Measurement, Boeing Aerospace Co., Seattle,
WA, Rome Air Development Center (RADC), Griffiss AFB, NY, RADC-TR-83-174, July
1983.

Prieto-Diaz, Ruben. A Software Classification Scheme, GTE Computer Science Labs, Oct

1987.

Roder, John. Phoenix Architecture, Sig Design Automation, June 1978, pp 18-22.

St. Dennis, R. A Guidebook for Writing Reusable Source Code In Ada, Honeywell Computer
Science Center, Golden Valley, MI, May 1986.

STARS Application Workshop, Naval Research Laboratory, San Diego, CA, Sep 1986.

Weiss, D. and Basili, V. Evaluating Software Development by Analysis of Changes: Some
Data from the Software Engineering Laboratory, IEEE Trans. on Software Eng., Vol SE-1 1,
No. 2, Feb 1985, pp 157 - 168.

CMU/SEI-8-TR-13 19



20 CMUISEI-88-TR-13



Appendix A: Glossary
accessibility - The extent to which software facilitates selective use or maintenance of its

components.

architecture - See Program architecture, system architecture.

architectural design - The process of defining a collection of hardware and software compo-
nents and their interfaces to establish a framework for the development of a computer sys-
tem.

automated design tool - A software tool that aids in the synthesis, analysis, modeling, or
* documentation of a software design. Examples include simulators, analytic aids, design

representation processors, and documentation generators.

compatibility - The ability of two or more systems to exchange information. Compare with
interoperability.

component - Logical part of a system or program.

integration - The process of combining software elements, hardware elements, or both into
an overall system.

* interoperability - The ability of two or more systems to exchange information and to mutually
use the information that has been exchanged. Compare with compatibility.

level - The degree of subordination of an item in a hierarchical arrangement.

* methodology (development methodology) - A systematic approach to the creation of soft-
ware.

modularity - The extent to which software is composed of discrete components such that a
change to one component has minimal impact on other components.

* module - A program unit that is discrete and Identifiable with respect to compiling, combining
with other units, and loading, for example, the input to, or output from, an assembler, com-
piler, linkage editor, or executive routine.

portability - The ease with which software can be transferred from one computer system or
* environment to another.

program architecture - The structure and relationships among the components of a com-
puter program. The program architecture may also include the program's interface with its
operations environment.

reusability - The extent to which a component can be used in multiple applications.

CtU/SEI-88-TR-13 21

0



reuse - The practice of applying the principles and tools of computer science and software
engineering to systematically acquire software development experience, represent it, and
use it to improve the development process and products.

software engineering - The systematic approach to the development, operation, mainte-
nance, and retirement of software.

software library - A controlled collection of software and related documentation designed to
aid in software development, (re)use, or maintenance. Types include software development
library, master library, production library, program library, and software repository.

standards enforcer - A software tool that determines whether prescribed development stan-
dards have been followed. The standards may include module size, module structure, com-
menting conventions, use of certain statement forms, and documentation conventions.

system architecture - The structure and relationship among the components of a system.
The system architecture may also include the system's interface with its operational environ-
ment.

system design - The process of defining the hardware and software architecture, compo-
nents, modules, interfaces, and data for a system to satisfy specified system requirements.

target machine - The computer on which a program is intended to run.

testbed - A test environment containing the hardware, instrumentation tools, simulators, and
other support software necessary for testing a system or system component.

22 CMU/SEI-88-TR-13



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. 0ECLASSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A
4 PERFORMING ORGANIZATION REPORT NUMSER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-13 ESD-TR-88-014

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
[ (If applicable)SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. ADDRESS 1Ciy. Slate and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS 1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

_.ANSQCnM MA Q1711
Sa. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003
Sc. AOORESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

i CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification) 63752F N/A N/A N/A

Phase I Testbed Description: Requirements d Selection uidelines
12. PERSONAL AUTHOR(S)

Robert Holibuagh, J.M. Perry, L.A. Sun
138. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FROM _ TO _ September 1988 23 pp
16. SUPPLEMENTARY NOTATION

17. COSATI CODES I. SUBJECT TERMS (Contine on reuere if necemary and idenlify by block number)

FIELD GROUP SUB. GR. software reuse

software development

19. ABSTRACT (Cont n oni re if necemary and identify by block number)

The Application of Reusable Software Components Project has constructed a reuse testbed for
conducting software engineering experiments in software reusability. The hardware and
system software of the testbed will provide a distributed computing environment with file-
server capability for the storage of reusable components and other artifacts of the devel-
opment process. The testbed will support a variety of domain-independent and domain-
dependent reusable components. The testbed will also support tools that foster reuse.
This document contains the requirements and selection criteria for the testbed hardware,
software, reusable resources, and an environment. For each of these four testbed resources
the requirements are grouped into five areas: support of experiments, maximization of ex-
perience and reusability, applicability to problem domains, acceleration of technology
transition, and advancing the state of the practice in reuse.

20. OISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UPCLASSIFIEO/UNLIMITED JP SAME AS RPT. 0 OTIC USERS C1 UNCLASSIFIED, UNLIMITED DISTRIBUTION

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 2 .OFFICE SYMBOL

KARL H. SHINGLER (Include Area Cod.l
_ , .

412 268-76,30 $EL J0

DO FORM 1473,83 APR EDITION OF I JAN 73 IS OSOLETE.

SECURITY CLASSIFICATION OF THIS PAG


